Dataset Distillation (DD), a newly emerging field, aims at generating much smaller and high-quality synthetic datasets from large ones. Existing DD methods based on gradient matching achieve leading performance; however, they are extremely computationally intensive as they require continuously optimizing a dataset among thousands of randomly initialized models. In this paper, we assume that training the synthetic data with diverse models leads to better generalization performance. Thus we propose two \textbf{model augmentation} techniques, ~\ie using \textbf{early-stage models} and \textbf{weight perturbation} to learn an informative synthetic set with significantly reduced training cost. Extensive experiments demonstrate that our method achieves up to 20$\times$ speedup and comparable performance on par with state-of-the-art baseline methods.
translated by 谷歌翻译
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
We present a strong object detector with encoder-decoder pretraining and finetuning. Our method, called Group DETR v2, is built upon a vision transformer encoder ViT-Huge~\cite{dosovitskiy2020image}, a DETR variant DINO~\cite{zhang2022dino}, and an efficient DETR training method Group DETR~\cite{chen2022group}. The training process consists of self-supervised pretraining and finetuning a ViT-Huge encoder on ImageNet-1K, pretraining the detector on Object365, and finally finetuning it on COCO. Group DETR v2 achieves $\textbf{64.5}$ mAP on COCO test-dev, and establishes a new SoTA on the COCO leaderboard https://paperswithcode.com/sota/object-detection-on-coco
translated by 谷歌翻译
对抗训练(AT)方法有效地防止对抗性攻击,但它们在不同阶级之间引入了严重的准确性和鲁棒性差异,称为强大的公平性问题。以前建议的公平健壮的学习(FRL)适应重新重量不同的类别以提高公平性。但是,表现良好的班级的表现降低了,导致表现强劲。在本文中,我们在对抗训练中观察到了两种不公平现象:在产生每个类别的对抗性示例(源级公平)和产生对抗性示例时(目标级公平)时产生对抗性示例的不​​同困难。从观察结果中,我们提出平衡对抗训练(BAT)来解决强大的公平问题。关于源阶级的公平性,我们调整了每个班级的攻击强度和困难,以在决策边界附近生成样本,以便更容易,更公平的模型学习;考虑到目标级公平,通过引入统一的分布约束,我们鼓励每个班级的对抗性示例生成过程都有公平的趋势。在多个数据集(CIFAR-10,CIFAR-100和IMAGENETTE)上进行的广泛实验表明,我们的方法可以显着超过其他基线,以减轻健壮的公平性问题(最坏的类精度为+5-10 \%)
translated by 谷歌翻译
最近,对抗机器学习攻击对实用音频信号分类系统构成了严重的安全威胁,包括语音识别,说话者识别和音乐版权检测。先前的研究主要集中在确保通过在原始信号上产生类似小噪声的扰动来攻击音频信号分类器的有效性。目前尚不清楚攻击者是否能够创建音频信号扰动,除了其攻击效果外,人类还可以很好地看待。这对于音乐信号尤其重要,因为它们经过精心制作,具有可让人的音频特征。在这项工作中,我们将对音乐信号的对抗性攻击作为一种新的感知攻击框架,将人类研究纳入对抗性攻击设计中。具体而言,我们进行了一项人类研究,以量化人类对音乐信号的变化的看法。我们邀请人类参与者根据对原始和扰动的音乐信号对进行评分,并通过回归分析对人类感知过程进行反向工程,以预测给定信号的人类感知的偏差。然后将感知感知的攻击作为优化问题提出,该问题找到了最佳的扰动信号,以最大程度地减少对回归人类感知模型的感知偏差的预测。我们使用感知感知的框架来设计对YouTube版权探测器的现实对抗音乐攻击。实验表明,感知意识攻击会产生对抗性音乐的感知质量明显优于先前的工作。
translated by 谷歌翻译
基于无监督的域适应性(UDA),由于目标情景的表现有希望的表现,面部抗散热器(FAS)方法引起了人们的注意。大多数现有的UDA FAS方法通常通过对齐语义高级功能的分布来拟合受过训练的模型。但是,对未标记的目标域的监督不足,低水平特征对齐降低了现有方法的性能。为了解决这些问题,我们提出了UDA FAS的新颖观点,该视角将目标数据直接适合于模型,即,通过图像翻译将目标数据风格化为源域样式,并进一步将风格化的数据提供给训练有素的数据分类的源模型。提出的生成域适应(GDA)框架结合了两个精心设计的一致性约束:1)域间神经统计量的一致性指导发生器缩小域间间隙。 2)双层语义一致性确保了风格化图像的语义质量。此外,我们提出了域内频谱混合物,以进一步扩大目标数据分布,以确保概括并减少域内间隙。广泛的实验和可视化证明了我们方法对最新方法的有效性。
translated by 谷歌翻译
随着各种面部表现攻击不断出现,基于域概括(DG)的面部抗散热(FAS)方法引起了人们的注意。现有的基于DG的FAS方法始终捕获用于概括各种看不见域的域不变功能。但是,他们忽略了单个源域的歧视性特征和不同域的不同域特异性信息,并且训练有素的模型不足以适应各种看不见的域。为了解决这个问题,我们提出了专家学习(AMEL)框架的自适应混合物,该框架利用了特定于域的信息以适应性地在可见的源域和看不见的目标域之间建立链接,以进一步改善概括。具体而言,特定领域的专家(DSE)旨在研究歧视性和独特的域特异性特征,以作为对共同域不变特征的补充。此外,提出了动态专家聚合(DEA),以根据与看不见的目标域相关的域相关的每个源专家的互补信息来自适应地汇总信息。并结合元学习,这些模块合作,可适应各种看不见的目标域的有意义的特定于域特异性信息。广泛的实验和可视化证明了我们对最先进竞争者的方法的有效性。
translated by 谷歌翻译
我们为时间动作细分任务提供了半监督的学习方法。该任务的目的是在长时间的未修剪程序视频中暂时检测和细分动作,其中只有一小部分视频被密集标记,并且没有标记的大量视频。为此,我们为未标记的数据提出了两个新的损失函数:动作亲和力损失和动作连续性损失。动作亲和力损失通过施加从标记的集合引起的动作先验来指导未标记的样品学习。动作连续性损失强制执行动作的时间连续性,这也提供了框架分类的监督。此外,我们提出了一种自适应边界平滑(ABS)方法,以建立更粗糙的动作边界,以实现更健壮和可靠的学习。在三个基准上评估了拟议的损失函数和ABS。结果表明,它们以较低的标记数据(5%和10%)的数据显着改善了动作细分性能,并获得了与50%标记数据的全面监督相当的结果。此外,当将ABS整合到完全监督的学习中时,ABS成功地提高了性能。
translated by 谷歌翻译
机上的机器学习使本地客户端推荐模型的轻量级部署可以减轻基于云的推荐人的负担,并同时结合了更多实时用户功能。然而,考虑到其强大的模型能力以及从十亿级项目库中产生的有效候选人,该行业的基于云的建议仍然非常重要。以前的尝试将两种范式的优点整合起来主要诉诸于顺序机制,该机制在基于云的建议之上构建了在设备上的推荐人。但是,当用户兴趣发生巨大变化时,这种设计是不灵活的:设备模型被有限的项目缓存粘住,而基于大型项目池的基于云的推荐则没有新的重新汇总反馈。为了克服这个问题,我们提出了一个元控制器,以动态管理推荐装置推荐人与基于云的推荐人之间的协作,并从因果角度引入一种新颖的有效样本构造,以解决元控制者的数据集缺失问题。在反事实样本和扩展培训的基础上,在工业推荐方案中进行的广泛实验显示了在设备云协作中Meta控制器的承诺。
translated by 谷歌翻译
旨在用自然语言和谐地与人类交流的智能对话体系对于促进人工智能时代的人机互动的发展非常出色。有了逐渐复杂的人类计算机交互要求(例如,多模式输入,时间敏感性),传统的基于文本的对话系统很难满足对更加生动和方便的交互的需求。因此,视觉背景增强对话系统(VAD)有可能通过感知和理解多模式信息(即图像或视频中的视觉上下文,文本对话历史记录)与人类进行交流,已成为主要的研究范式。 VAD受益于视觉和文本上下文之间的一致性和互补性,具有产生引人入胜和背景感知响应的潜力。为了描述VAD的开发,我们首先表征VAD的概念和独特功能,然后介绍其通用系统体系结构以说明系统工作流程。随后,对一些研究挑战和代表性作品进行了详细研究,然后进行了权威基准摘要。我们通过提出一些开放问题和有前途的VAD研究趋势来结束本文,例如,在跨模式对话环境下,人机对话的认知机制以及知识增强的跨模式语义互动。
translated by 谷歌翻译